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ABSTRACT

In this paper, we propose a new cumulant based inverse
filtering algorithm for the identification and deconvolu-
tion of linear time-invariant (LTI) nonminimum-phase
systems with only non-Gaussian output measurements
contaminated by Gaussian noise. Some simulation re-
sults are provided to demonstrate that the proposed
algorithm works well.

1. INTRODUCTION
The identification of a linear time-invariant (LTI) sys-
tem h(k) from noisy output z(k) based on the following
. convolutional model:

z(k) = y(k) + n(k) = u(k) »h(k) +n(k) (1)

is very important in many signal processing areas such
as seismic deconvolution, channel equalization, radar,
sonar, speech processing and image processing. Re-
cently, cumulant (higher order statistics) based iden-
tification [1-5] of nonminimum-phase LTI systems with
only non-Gaussian output measurements has drawn ex-
tensive attention in the previous signal processing areas
because cumulants, which are blind to any kind of a
Gaussian process, not only extract the amplitude infor-
mation but also the phase information of A(k), mean-
while they are inherently immune from Gaussian mea-
surement noise n(k).

Higher order statistics based inverse filter criteria [6-
9] have been used to estimate h(k). In this paper, we
propose a new cumulant based inverse filtering algo-
rithm for the identification of h(k) as well as the esti-
mation of the desired signal u(k).

2. A NEW INVERSE FILTERING
ALGORITHM
Assume that data z(k),k = 0,1,.--, N — 1 were gen-
erated from the model given by (1). The new inverse

filtering algorithm to be presented below are based on
the following modeling assumptions:

(A1) The system h(k) is causal and exponentially sta-
ble; it can be minimum-phase or nonminimum-
phase.

(A2) The input u(k) is real, zero-mean, stationary,
independent identically distributed (¢.5.d.), non-
Gaussian with Mth-order cumulant 4.

(A3) The measurement noise n(k) is Gaussian which
can be white or colored with unknown statistics.

(A4) The input u(k) is independent of n(k).

Next, we present the following theorem on which the
new inverse filtering algorithm is based.

Theorem 1. Assume that z(k) was generated from
(1) under the previous assumptions (A1) through (A4).
Let e(k) be the output of a stable LTI filter v(k) with
the input z(k). Let ©(k) denote the optimum v(k) based
on the following criterion

I(o(k)) = @l—l@ 3 Ch (B) 2 J6(E) 21 (2)
e E

where M>3, k = (ky,---,ka—1) and Cag,e(k) is the
Mth-order cumulant function of e(k). Then #(k)
h(k) = ab(k — 1) and the associated é(k) = au(k — )
where [ is an integer and a # 0.

Proof: The signal e(k) = z(k) * v(k) = e(k) + n(k)
where e(k) = y(k)*v(k) = u(k) *h(k) *v(k) and n(k) =
n(k)*v(k). Thus Cpas.(k) = Cm (k) since n(k) is Gaus-
sian. It is trivial to see that J > 1. That J = 1 happens
when Cp,e(k) = Cr (k) = 0 for Vk # 0, from which
one can easily infer that 9(k)*h(k) = as(k —1) and the
associated é(k) = au(k —!) where [ is an integer and
a#0. QED.

Let v(k) be a finite impulse response (FIR) filter of
order L and e(k) be the output of v(k) in response of
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the input z(k), i.e.,

L .
e(k) = Zv(.i) z(k - 5)
j=0 .
= (z(k),z(k-1),..,2(k-L)) v, (3)
where

vy = (v(0), v(1), ..., »(L))T. 4)

Based on Theorem 1, we estimate the inverse filter v(k)
of h(k) by minimizing the following objective function

J(L)= ég(%) ®)
where .
D(L) =Y Ciy. (k) (6)
k

in which Caq,¢(k) is the biased Mth-order sample cu-
mulant function of e(k). For example, for M = 3

]
k=K,

Coulbi k)= 5 3 e(®)elk+k)e(k+k) (1)
=K,

where K; = maz(0,—k;,—~k;) and K, = min(N —
1,N =1k, N —1-kj). Moreover, since J(L) is a
highly nonlinear function of v, it is almost impossible
to find a closed-form solution for the optimum §,. In-
stead, we resort to an iterative numerical optimization
method to search for the desired ;. The new cumulant
based inverse filtering algorithm is as follows:

(s1) Let L = 0 and compute J(L) with §; = 1 (i.e.,
(k) = 6(k)).

(82) Set L=L +1.

(s3) Search for the Jpin(L) (minimum of J(L)) and the
associated §; by a Newton-Raphson type iterative
algorithm.

(s4) If Jmin(L) converges, then stop; otherwise go to
(s2).

The Newton-Raphson type iterative algorithm used
in (s3) for the case of M = 3 is summarized in
Appendiz A. Three remarks regarding the proposed
algorithm are noteworthy as follows:

(R1) The D(L) in J(L) (see (5) and (6)) can only be
calculated over a finite (M—1)-dimensional region.
We calculate D(L) over the finite domain of sup-
port F(g) of the Mth-order cumulant function
of a non-Gaussian M A(q) process which can be
viewed as an approximation to the non-Gaussian

linear process e(k). For instance, for M = 3, the
finite region F(q) is the following hexagonal re-
gion:

FO={k||kIsalblsal b=k},
®

(R2) The initial guess $7(0) = (37_,,0) for L > 2,
where §;_, is the optimum estimate of y,_, as-
sociated with Jpmin(L—1) , is used to initialize the
iterative algorithm in (s3) except that the initial
guess 9 (0) = (0.7071,0.7071). In each iteration
of the iterative algorithm, the objective function
J(L) is guaranteed to decrease, meanwhile 9y (i)
is normalized such that ||§.(f)|| = 1. Therefore,
Jmin(L) decreases monotonically with L which
together with the fact of Jmin(L) > 1 guarantees
the convergence of the proposed algorithm.

(R3) The proposed inverse filtering algorithm can be
used for any M > 3 (order of cumulants) as long
as the Mth-order cumulant y,s of the driving in-
put u(k) is not equal to zero.

3. SIMULATION RESULTS

In this section, we show two simulation examples to
support that the proposed algorithm works well. The
driving noise u(k) used was a zero-mean, Exponentially
distributed random sequence with variance 03 =1 and
skewness 73 = 2. We passed this sequence through a se-
lected LTI system H(z) to obtain the noise-free output
signal y(k) and then added a zero-mean white Gaussian
noise sequence n(k) to y(k) to form the synthetic noisy
data z(k) for signal-to-noise ratio (SNR) equal to 10.
The order of cumulants used was M = 3 and the length
of data was N=1024. Mean and standard deviation of
9(k)'s were calculated from 30 independent estimates
obtained by the proposed inverse filtering algorithm.
Now, let us turn to Example 1.

Example 1: AR process of known order
A second-order AR system

H(z) =1/A(2) = 1/(14+0.7z7! 4. 0.12~%)

was used. For each run, the estimate §, was obtained
only through the procedure (s3) of the proposed inverse
filtering algorithm where L = 2,¢ = 5 in the calculation
of D(L) and the initial guess for ¥I was (0.5774, 0.5774,
0.5774). The simulation results for Jn:, and the asso-
ciated optimum %(k) are shown in Table 1, from which
one can see that #(k) approximates well the impulse re-
sponse a(k) of the inverse filter 1/H(z) = A(z), except
for a scale factor 0.8133 (2 V(2)/A(z) = 0.8165). The
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simulation results are consistent with Theorem 1 and
support that the proposed algorithm works well.

Table 1. Simulation results for Example 1.

a(0)=1, a(1)=0.7, a(2)=0.1, N=1024,
SNR=10, 30 independent runs.

Imin 1.0569+0.0294

v(0 0.813340.0194

9(1 0.5744+0.0268

[ 0.0837£0.0261 |

Example 2: ARMA process
A nonminimum-phase ARMA model

_ 1-272"140.5:72
T 1401271 -0.12z-3

was used for this example. The first estimate o(k) was
obtained through the previous procedure (s1) through
(s4) until L = 16 where ¢ = 7 in the calculation of
D(L). For the other 29 runs, with the first estimate
as the initial guess of v(k), we only went through the
procedure (s3) with L = 16 and ¢ = 7 to obtain the
optimum #(k). The thirty estimates of v(k) are shown
in Fig. 1 where we have artificially compensated for
scale factor and time-delay so that #(k)'s can be clearly
compared with the impulse response of 1/H(z). Note,
from Fig. 1(a), that different kinds of lines are used
to make each single (k) discernible from other #(k)’s.
One can also see, from Fig. 1(b), that the mean (dashed
line) of the thirty estimates of v(k) approximates well
the impulse response (solid line) of the inverse filter
1/H(z). Again, these simulation results are consistent
with Theorem 1 and justify that the proposed cumulant
based inverse filtering algorithm works well.

H(z)

4. CONCLUSIONS

In this paper, we have presented a new cumulant based
inverse filtering algorithm based on Theorem 1 for the
identification and deconvolution of a LTI nonminimum-
phase system H(z) with only non-Gaussian output
measurements contaminated by Gaussian noise. The
inverse filter assumed to be a FIR filter of order L is es-
timated through the identification procedure (s1)-(s4)
of the proposed inverse filtering algorithm described in
Section 2. We also guarantee the convergence of the
proposed inverse filtering algorithm (see (R2)). Surely,
the parameter L must be set large enough for good ap-
proximation of V(z) to the inverse filter 1/H(z). Once
the inverse filter V(z) = 1/H(z) is obtained, H(z)
can be easily obtained from V(z). We also showed
some simulation results which not only are consistent

with Theorem 1 but also support the good performance
of the proposed cumulant based inverse filtering algo-
rithm.

APPENDIX A
Newton-Raphson Type Algorithm Used in (s3)
The Newton-Raphson type algorithm updates 2z(%) at
the ith iteration by

2.() =2, (i - 1) = p[Tr(Hi=1)] g, ., (9)

where 0 < p < 1, Tr(H;-;) denotes the trace of H;.y,
and g;_, 88 well as H;_; denote the gradient and the

Hessian matrix for y; = $, (i — 1), respectively, as fol-

lows:
U] (10)
-1 82& v, =0, (i-1)
3J(L
H‘—l = 8J(2 ) (11)
Yy v, =0, (-1)

At each iteration, updating §; by (9) with p = 1 nor-
mally leads to the decrease of J(L); otherwise, a smaller
p must be considered.

Assume that M=3. Next, we present how to compute
0C3,¢(k)/0yy and 82Cs o(k)/0y? which are needed for

computing g,_, and H;_;. Taking the partial derivative
of (3) with respect to ¥(m), m=0,1,..., L, we find
;’:((r"n)) =e(k-m), m=01,.-,L.  (12)
Let
1 k=K,
Cred($, §, ) = i kg;l b(k + i)e(k + j)d(k +£). (13)

From (7), (12) and (13), we have

0Cse(k) _
m = Ceee(—m, ky, k3)

+ Cree(kr — m, 0, k) + Cree(ks — m,0, kl)* (14)
Further taking the partial derivative of (14) with re-

spect to v(s), s =0,1,---, L, we obtain
82Csu(l) _
Bo(e)6u(m) = Ceze(—m, k1 — 8,k)

+,c’=.(_8, kl - m, kﬁ) + Czcz(-m: kl: kz - ‘)
+ Cacz(“: ky ky - m) + C.,,(O, ky — m, k; - ‘)
+ C,,,(O, ki —s,kg - m) (15)
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Figure 1: Simulation results for Example 2. (a) Thirty
estimates of v(k) and (b) impulse response (solid line)
of the true inverse filter 1/H(2) and mean (dashed line)
of the thirty estimates of v(k).
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